Percocet, Page 1

Percocet, oxycodone hydrochloride and acetaminophen, is indicated for the relief of moderate to moderately severe pain. Oxycodone is a semisynthetic pure opioid agonist whose principal therapeutic action is analgesia.

PERCOCET — oxycodone hydrochloride and acetaminophen tablet
Physicians Total Care, Inc.

DESCRIPTION

Each tablet, for oral administration, contains oxycodone hydrochloride and acetaminophen in the following strengths:

Oxycodone Hydrochloride, USP 2.5 mg*
Acetaminophen, USP 325 mg
*2.5 mg oxycodone HCl is equivalent to 2.2409 mg of oxycodone.

Oxycodone Hydrochloride, USP 5 mg*
Acetaminophen, USP 325 mg
*5 mg oxycodone HCl is equivalent to 4.4815 mg of oxycodone.

Oxycodone Hydrochloride, USP 7.5 mg*
Acetaminophen, USP 325 mg
*7.5 mg oxycodone HCl is equivalent to 6.7228 mg of oxycodone.

Oxycodone Hydrochloride, USP 7.5 mg*
Acetaminophen, USP 500 mg
*7.5 mg oxycodone HCl is equivalent to 6.7228 mg of oxycodone.

Oxycodone Hydrochloride, USP 10 mg*
Acetaminophen, USP 325 mg
*10 mg oxycodone HCl is equivalent to 8.9637 mg of oxycodone.

Oxycodone Hydrochloride, USP 10 mg*
Acetaminophen, USP 650 mg
*10 mg oxycodone HCl is equivalent to 8.9637 mg of oxycodone.

All strengths of PERCOCET also contain the following inactive ingredients: Colloidal silicon dioxide, croscarmellose sodium, crospovidone, microcrystalline cellulose, povidone, pregelatinized cornstarch, and stearic acid. In addition, the 2.5 mg/325 mg strength contains FD&C Red No. 40 Aluminum Lake and the 5 mg/325 mg strength contains FD&C Blue No. 1 Aluminum Lake. The 7.5 mg/325 mg and the 7.5 mg/500 mg strengths contain FD&C Yellow No. 6 Aluminum Lake. The 10 mg/325 mg and the 10 mg/650 mg strengths contain D&C Yellow No. 10 Aluminum Lake.

Oxycodone, 14-hydroxydihydrocodeinone, is a semisynthetic opioid analgesic which occurs as a white, odorless, crystalline powder having a saline, bitter taste. The molecular formula for oxycodone hydrochloride is C18H21NO4•HCl and the molecular weight 351.83. It is derived from the opium alkaloid thebaine, and may be represented by the following structural formula:

Oxycodone Hydrochloride Structural Formula

Acetaminophen, 4’-hydroxyacetanilide, is a non-opiate, non-salicylate analgesic and antipyretic which occurs as a white, odorless, crystalline powder, possessing a slightly bitter taste. The molecular formula for acetaminophen is C8H9NO2 and the molecular weight is 151.17. It may be represented by the following structural formula:

Acetaminophen Structural Formula

CLINICAL PHARMACOLOGY

Central Nervous System

Oxycodone is a semisynthetic pure opioid agonist whose principal therapeutic action is analgesia. Other pharmacological effects of oxycodone include anxiolysis, euphoria and feelings of relaxation. These effects are mediated by receptors (notably µ and κ) in the central nervous system for endogenous opioid-like compounds such as endorphins and enkephalins. Oxycodone produces respiratory depression through direct activity at respiratory centers in the brain stem and depresses the cough reflex by direct effect on the center of the medulla.

Acetaminophen is a non-opiate, non-salicylate analgesic and antipyretic. The site and mechanism for the analgesic effect of acetaminophen has not been determined. The antipyretic effect of acetaminophen is accomplished through the inhibition of endogenous pyrogen action on the hypothalamic heat-regulating centers.

Gastrointestinal Tract and Other Smooth Muscle

Oxycodone reduces motility by increasing smooth muscle tone in the stomach and duodenum. In the small intestine, digestion of food is delayed by decreases in propulsive contractions. Other opioid effects include contraction of biliary tract smooth muscle, spasm of the Sphincter of Oddi, increased ureteral and bladder sphincter tone, and a reduction in uterine tone.

Cardiovascular System

Oxycodone may produce a release of histamine and may be associated with orthostatic hypotension, and other symptoms, such as pruritus, flushing, red eyes, and sweating.

Pharmacokinetics

Absorption and Distribution

The mean absolute oral bioavailability of oxycodone in cancer patients was reported to be about 87%. Oxycodone has been shown to be 45% bound to human plasma proteins in vitro. The volume of distribution after intravenous administration is 211.9 ±186.6 L.

Absorption of acetaminophen is rapid and almost complete from the GI tract after oral administration. With overdosage, absorption is complete in 4 hours. Acetaminophen is relatively uniformly distributed throughout most body fluids. Binding of the drug to plasma proteins is variable; only 20% to 50% may be bound at the concentrations encountered during acute intoxication.

Metabolism and Elimination

A high portion of oxycodone is N-dealkylated to noroxycodone during first-pass metabolism. Oxymorphone, is formed by the O-demethylation of oxycodone. The metabolism of oxycodone to oxymorphone is catalyzed by CYP2D6. Free and conjugated noroxycodone, free and conjugated oxycodone, and oxymorphone are excreted in human urine following a single oral dose of oxycodone. Approximately 8% to 14% of the dose is excreted as free oxycodone over 24 hours after administration. Following a single, oral dose of oxycodone, the mean ± SD elimination half-life is 3.51 ± 1.43 hours.

Acetaminophen is metabolized in the liver via cytochrome P450 microsomal enzyme. About 80-85% of the acetaminophen in the body is conjugated principally with glucuronic acid and to a lesser extent with sulfuric acid and cysteine. After hepatic conjugation, 90 to 100% of the drug is recovered in the urine with in the first day.

About 4% of acetaminophen is metabolized via cytochrome P450 oxidase to a toxic metabolite which is further detoxified by conjugation with glutathione, present in a fixed amount. It is believed that the toxic metabolite NAPQI (N acetyl-p-benzoquinoneimine, N-acetylimidoquinone) is responsible for liver necrosis. High doses of acetaminophen may deplete the glutathione stores so that inactivation of the toxic metabolite is decreased. At high doses, the capacity of metabolic pathways for conjugation with glucuronic acid and sulfuric acid may be exceeded, resulting in increased metabolism of acetaminophen by alternate pathways.

INDICATIONS AND USAGE

PERCOCET is indicated for the relief of moderate to moderately severe pain.

CONTRAINDICATIONS

PERCOCET tablets should not be administered to patients with known hypersensitivity to oxycodone, acetaminophen, or any other component of this product.

Oxycodone is contraindicated in any situation where opioids are contraindicated including patients with significant respiratory depression (in unmonitored settings or the absence of resuscitative equipment) and patients with acute or severe bronchial asthma or hypercarbia. Oxycodone is contraindicated in the setting of suspected or known paralytic ileus.

WARNINGS

Misuse, Abuse and Diversion of Opioids

Oxycodone is an opioid agonist of the morphine-type. Such drugs are sought by drug abusers and people with addiction disorders and are subject to criminal diversion.

Oxycodone can be abused in a manner similar to other opioid agonists, legal or illicit. This should be considered when prescribing or dispensing PERCOCET tablets in situations where the physician or pharmacist is concerned about an increased risk of misuse, abuse, or diversion. Concerns about misuse, addiction, and diversion should not prevent the proper management of pain.

Healthcare professionals should contact their State Professional Licensing Board or State Controlled Substances Authority for information on how to prevent and detect abuse or diversion of this product.

Administration of PERCOCET (Oxycodone and Acetaminophen Tablets, USP) tablets should be closely monitored for the following potentially serious adverse reactions and complications:

Respiratory Depression

Respiratory depression is a hazard with the use of oxycodone, one of the active ingredients in PERCOCET tablets, as with all opioid agonists. Elderly and debilitated patients are at particular risk for respiratory depression as are non-tolerant patients given large initial doses of oxycodone or when oxycodone is given in conjunction with other agents that depress respiration. Oxycodone should be used with extreme caution in patients with acute asthma, chronic obstructive pulmonary disorder (COPD), cor pulmonale, or preexisting respiratory impairment. In such patients, even usual therapeutic doses of oxycodone may decrease respiratory drive to the point of apnea. In these patients alternative non-opioid analgesics should be considered, and opioids should be employed only under careful medical supervision at the lowest effective dose.

In case of respiratory depression, a reversal agent such as naloxone hydrochloride may be utilized (see OVERDOSAGE).

Head Injury and Increased Intracranial Pressure

The respiratory depressant effects of opioids include carbon dioxide retention and secondary elevation of cerebrospinal fluid pressure, and may be markedly exaggerated in the presence of head injury, other intracranial lesions or a pre-existing increase in intracranial pressure. Oxycodone produces effects on pupillary response and consciousness which may obscure neurologic signs of worsening in patients with head injuries.

Hypotensive Effect

Oxycodone may cause severe hypotension particularly in individuals whose ability to maintain blood pressure has been compromised by a depleted blood volume, or after concurrent administration with drugs which compromise vasomotor tone such as phenothiazines. Oxycodone, like all opioid analgesics of the morphine-type, should be administered with caution to patients in circulatory shock, since vasodilation produced by the drug may further reduce cardiac output and blood pressure. Oxycodone may produce orthostatic hypotension in ambulatory patients.

Hepatotoxicity

Precaution should be taken in patients with liver disease. Hepatotoxicity and severe hepatic failure occurred in chronic alcoholics following therapeutic doses.

PRECAUTIONS

General

Opioid analgesics should be used with caution when combined with CNS depressant drugs, and should be reserved for cases where the benefits of opioid analgesia outweigh the known risks of respiratory depression, altered mental state, and postural hypotension.

Acute Abdominal Conditions

The administration of PERCOCET (Oxycodone and Acetaminophen Tablets, USP) or other opioids may obscure the diagnosis or clinical course in patients with acute abdominal conditions.

PERCOCET tablets should be given with caution to patients with CNS depression, elderly or debilitated patients, patients with severe impairment of hepatic, pulmonary, or renal function, hypothyroidism, Addison’s disease, prostatic hypertrophy, urethral stricture, acute alcoholism, delirium tremens, kyphoscoliosis with respiratory depression, myxedema, and toxic psychosis.

PERCOCET tablets may obscure the diagnosis or clinical course in patients with acute abdominal conditions. Oxycodone may aggravate convulsions in patients with convulsive disorders, and all opioids may induce or aggravate seizures in some clinical settings.

Following administration of PERCOCET tablets, anaphylactic reactions have been reported in patients with a known hypersensitivity to codeine, a compound with a structure similar to morphine and oxycodone. The frequency of this possible cross-sensitivity is unknown.

Interactions with Other CNS Depressants

Patients receiving other opioid analgesics, general anesthetics, phenothiazines, other tranquilizers, centrally-acting anti-emetics, sedative-hypnotics or other CNS depressants (including alcohol) concomitantly with PERCOCET tablets may exhibit an additive CNS depression. When such combined therapy is contemplated, the dose of one or both agents should be reduced.

Interactions with Mixed Agonist/Antagonist Opioid Analgesics

Agonist/antagonist analgesics (i.e., pentazocine, nalbuphine, and butorphanol) should be administered with caution to a patient who has received or is receiving a course of therapy with a pure opioid agonist analgesic such as oxycodone. In this situation, mixed agonist/antagonist analgesics may reduce the analgesic effect of oxycodone and/or may precipitate withdrawal symptoms in these patients.

Ambulatory Surgery and Postoperative Use

Oxycodone and other morphine-like opioids have been shown to decrease bowel motility. Ileus is a common postoperative complication, especially after intra-abdominal surgery with use of opioid analgesia. Caution should be taken to monitor for decreased bowel motility in postoperative patients receiving opioids. Standard supportive therapy should be implemented.

Use in Pancreatic/Biliary Tract Disease

Oxycodone may cause spasm of the Sphincter of Oddi and should be used with caution in patients with biliary tract disease, including acute pancreatitis. Opioids like oxycodone may cause increases in the serum amylase level.

Tolerance and Physical Dependence

Tolerance is the need for increasing doses of opioids to maintain a defined effect such as analgesia (in the absence of disease progression or other external factors). Physical dependence is manifested by withdrawal symptoms after abrupt discontinuation of a drug or upon administration of an antagonist. Physical dependence and tolerance are not unusual during chronic opioid therapy.

The opioid abstinence or withdrawal syndrome is characterized by some or all of the following: restlessness, lacrimation, rhinorrhea, yawning, perspiration, chills, myalgia, and mydriasis. Other symptoms also may develop, including: irritability, anxiety, backache, joint pain, weakness, abdominal cramps, insomnia, nausea, anorexia, vomiting, diarrhea, or increased blood pressure, respiratory rate, or heart rate.

In general, opioids should not be abruptly discontinued (see DOSAGE AND ADMINISTRATION: Cessation of Therapy).

Information for Patients/Caregivers

The following information should be provided to patients receiving PERCOCET tablets by their physician, nurse, pharmacist, or caregiver:

  1. Patients should be aware that PERCOCET tablets contain oxycodone, which is a morphine-like substance.
  2. Patients should be instructed to keep PERCOCET tablets in a secure place out of the reach of children. In the case of accidental ingestions, emergency medical care should be sought immediately.
  3. When PERCOCET tablets are no longer needed, the unused tablets should be destroyed by flushing down the toilet.
  4. Patients should be advised not to adjust the medication dose themselves. Instead, they must consult with their prescribing physician.
  5. Patients should be advised that PERCOCET tablets may impair mental and/or physical ability required for the performance of potentially hazardous tasks (e.g., driving, operating heavy machinery).
  6. Patients should not combine PERCOCET tablets with alcohol, opioid analgesics, tranquilizers, sedatives, or other CNS depressants unless under the recommendation and guidance of a physician. When co-administered with another CNS depressant, PERCOCET tablets can cause dangerous additive central nervous system or respiratory depression, which can result in serious injury or death.
  7. The safe use of PERCOCET tablets during pregnancy has not been established; thus, women who are planning to become pregnant or are pregnant should consult with their physician before taking PERCOCET tablets.
  8. Nursing mothers should consult with their physicians about whether to discontinue nursing or discontinue PERCOCET tablets because of the potential for serious adverse reactions to nursing infants.
  9. Patients who are treated with PERCOCET tablets for more than a few weeks should be advised not to abruptly discontinue the medication. Patients should consult with their physician for a gradual discontinuation dose schedule to taper off the medication.
  10. Patients should be advised that PERCOCET tablets are a potential drug of abuse. They should protect it from theft, and it should never be given to anyone other than the individual for whom it was prescribed.

Laboratory Tests

Although oxycodone may cross-react with some drug urine tests, no available studies were found which determined the duration of detectability of oxycodone in urine drug screens. However, based on pharmacokinetic data, the approximate duration of detectability for a single dose of oxycodone is roughly estimated to be one to two days following drug exposure.

Urine testing for opiates may be performed to determine illicit drug use and for medical reasons such as evaluation of patients with altered states of consciousness or monitoring efficacy of drug rehabilitation efforts. The preliminary identification of opiates in urine involves the use of an immunoassay screening and thin-layer chromatography (TLC). Gas chromatography/mass spectrometry (GC/MS) may be utilized as a third-stage identification step in the medical investigational sequence for opiate testing after immunoassay and TLC. The identities of 6-keto opiates (e.g., oxycodone) can further be differentiated by the analysis of their methoxime-trimethylsilyl (MO-TMS) derivative.

All medication material on this site is included in as near-original form as possible: information as supplied by the FDA has been rendered here with only typographical or stylistic modifications and not with any substantive alterations of content, meaning or intent. This page was originally published by on and was last reviewed or updated by Site Editor on .

This site is brought to you by the team behind counselling and psychotherapy site CounsellingResource.com. Our mental health medication information is not intended as a substitute for direct consultation with a qualified health professional. The graphic portion of our unofficial logo was created by the talented Ukrainian artist and illustrator Iaroslav Lazunov and is used under license, copyright © Depositphotos.com/Iaroslav Lazunov.

Copyright © 2002-2019. All Rights Reserved.